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The Product Fom of Inverse (1) is being used more and more often
in large scale Linear Programming Systems. The inversion of large and -
sparse matrices is especially suited to the Product Form, prowided such
inverses are kept reasonably sparse (2, 3). Very few of the computa-
tional techniques, currently known, for keeping the Product !‘om‘ of
Inverse (PFI) sparse seem to be available in published literature (U, 5).
In this paper, a geometrical interpretation of the PFI is utilized to
explain the current:ly known techniques of keeping the PFI of a matrix

3

sparse. Some proposed improvements in these techniquea are also '
discussed.

Let Abe a nxn non-singular matrix and I the associated identity
matrix. The columms of I will be considered as a "basis" in a n-dimen-
sional Euclidian space E. .Each element of a given column of A matrix
then is a coordinate of that colum in tems of our basis. The columns

of A can also be thought of as vectors in E, centered at the origin. If

a column 8 of A has an element g = 0, then evidently column s is

orthogonal to e, - the unit basic vector (r™! colum of I). Matrix A,
which is sparse, can now be visualized as a matrix having most of its
columns orthogonal to a large percentage of different basic vectors. In ‘
other words, the columns of a sparse matrix lie mostly in low degree
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2.

Let us now discuss the well-known Gauss-Jordan method (6) and its

relationship to PFI of A. We pick a column of A and find a linear
transformation T(1)A = A("), where A1) 15 a matrix with one unit column.
Next, we find a T(,") so that T(2)a(2) = 4(3) having two of its coljmns

transformed to unit vectors. Proceeding in this mamner A(k) v.l.ll have

k of its columns already transformed into unit vectors and finally A(®)

will have all of its columns as unit vectors and it will be a permuta-

tion of I, say I,. The n linear transformations of the type r(“) are

such that | | S ‘ ‘
2(n) (n-1) coo¥(®) ()1 = 42, the inverse of A.

Let us tal.:e.a closer look at (k). I.ét aij(k) d“‘“‘v the £
;aleanent: 1n row i and colmm J of the matxfj.x A(k) . Whenever a column of
A(K) gets transformed into # unit vector we say it has gone into the |
basis and the original unit basic vector in that position is said to have
gotten out of the basis. The linear transformation ok +1) that

transforms a non-basic column s of A(k) into e unit vector e, is

equivalent to the following operstions. Divide the row r of a(x) by "Ar,(k) 1)

and subtract multiples of this new row r from all the other rows of A(x)
such that all the other elements of lig(k) are reduced to sero. Evidently
the preceding operations on A™) are equivalent to the premultiplication
of A(K) by a matrix that is obtained from I with its rtB coluwm replaced

by the transpose of the row vector.

;aia(k) "Zs(k) y soe "r-.l,s(k)f , L ,"ﬂl,a(k) “na(k)

» 2,

RGN ¢ N C R U R )

Alsq if L) P applied to e, we got the above-mentioned column vector.
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Such vectors are called eta vectors and the corresponding matrices are
known as eta matrices. In other words, all the eta vectors are trans-
formed representations (or coordinates) of original unit basic vectors
at the instant they are displaced from the basis. We have seen that
corresponding to each linear transformation 'r(“) there is an sta vector
7). 11 of the n eta vectors constitute the PFI. In PFI the eta
vectors once formed are not operated upon by subsequent tranafoxiations.
In contrast, if the eta vectors are transformed we get the explicit
inverse, this is the Gauss-Jordan method for matrix inversion. Thus, in
computing PFI the mumber of columns to be transformed decreases by one at
each stage, while in the evaluation of explicit inverse by Gauss-Jordan
method all the columns are transformed at each stage.

To keep the PFI sparse the non-basic columns of AL%): k = 0, 1, 2,...

"(n - 1) are kept sparse because we have seen that the eta vectors are

formed from non-basic columms of A(k)! s. Itwill .be shown below that by
proper choice of vectors entering and leaving the basis, the growth‘ of
non-zero alements in non-basic colwmns of A(k) can be controlled. The
density d'%) of the matrix A(K) 15 defined to be the ratio of mmber of
non-zero elements in the (n - k) non-basic columns of A(k) to the total
mumber of elements in those columns. Thus d{(0) is the density of the .
original matrix A(O) or A. The density of PFI is equal to the total

. number of non-zero elements in all the eta vectors divided by n®.

_ Let us introduce the row count vector c(X) and its significance at
this stage (L). The number of non-sero elements in each row of the
non-basic columns of A( k) is counted; the .col\mn vector of these n row
counts 15 ¢{K). Therefore an element cs{¥), in row 1 of the row count
vector, is the mumber of non-basic vectors that uss the basic vector ey
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in their representations. ILet n%n Oi(k) = cr(k). Then e, is the basic
- vector used in the representation of (one of) the least number of
non-basic vectors or e, is orthogonal to (one of the) largest number of
non-basic vectors. |

A linear transformation of the type T(k’;) (or e?’.a matrix) that
brings column s into the basis and réoves unit basis vector e. out of -
the basis will leave all non-basic colums of A(k) that are orthogonal
to o{T) unchanged, because only those column vectors that have a non-
zero élenent in row r will get changed if pre-multiplied by an eta
matrix -- which we recall is an identity matrix with column r replaced by the
eta vector. Therefore, in order that as many non-basic columns of A(k")
be identical to the non-basic colwms of ACX), we remove cut of the
possible original basic vectors that can be replaced by the given column
vector, the one that corresponds to minimum ci(k) ~(4). This procedure
will evidently keep the growth of non-zero elements in non-basic columns
of A(k*) gnayi. |

We have thus far a criterion for deciding which original basic unit
vector to remove from the basis at each stage, such that ﬁxe density
growth of the PFI is kept low. In order to determine which column of A(K)
to bring into the basis at each stage, we proceed as follows. Define the
(k)

density measure Dj of each non-basic coiumn vector A(_k) as .

Dj(k) =T ci(k), where L' denotes that the sum .’_mé taken for only the

rows that correspond to non-sero elements of column j of the matrix A(K),
The non-basic column vector of A(k) having the minimum Dd(k) is

chosen to enter the basis at step ki Thus min Dj(k) - Ds(k), where a'(k)

is the column chosen to 'enf.gr tbe basis. We can say that the hyperplane

in which a,(k) lies is not only of 1'ow degree but also is composed of

basic vectox;s such that each of them is mused in the_ representation of few

nan haads wantnre .




Columns ofbk(o) that have only one element (such columns are called
singletons) when brought into the basis, leave the density of non-basic
colums of A'Q) unchanged. Therefore all the singletons should be in-
serted into the basis, before selecting the coluxns on the basis of

 minimm Dj(k) . -

There is one factor which we have not taken into consideration so
far: the value of element a.r,(,k) (am(k) is known as pivot). Very
small pivots should be avoided in consideration of round-off errors and
keeping the elements a,,(k) bounded (7). We shall discuss the pivot sise

from a geometrical viewpoint. The angle between the vectors e, and a.(k)
is
y; = cos a [ep . ag(k)
Hegll = 11 2™ 11

where the norms denote the lengths of the vectors. Therefore

,_ -1/ ara(k) \

o \ua,‘*)n /

For yp, to be small am(k) should be large in absolute value. Thus by

choosing the largest pivot we transfém as(k) to the original available‘
basic vector making the smallest angle with a,(X). Small pivot implies
that a'(k) is nearly orthogonal to unit basic vector corresponding to

the position of small pivot. In practice (L), when choosing a pivot, only
the rows that have elements greater than a certain tolerance in abatolute

e
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value are considered. This avoids replacing an original basic vector
that is nearly orthogonal to incoming vector.

The computation of Dj(k) (J=k+1, ..., n3 k=0, 1,...,n) and
sorting the column vectors according to ascending values of DJ(‘.‘) at
every step k, is quite time consuming in practice. Therefore Dj(m‘
are camputed and columns are sorted in ascending order of DJ(Q),

j =1, 2,...,n, only once at the beginning. The c'¥) vector is also
cbtained by suitably modifying originally computed vector c¢(0). e
present methods of modifying c(k) .to c(h") (2,4) are as follows. All
elements of c(k) that correspond to non-gero e;emente of the vector
entering the basis are decreased by unity when a vector enters the basis.
This does not take into consideration the growth in the denaity of re-
maining non-basic column vectors and the consequent change in c(k) .

We have found that approximate probability arguments can be utilized to .
obtain heuristically an approximate formula for computing c (k+t),

k F 0 as follows. Consider the matrix A(k) . There is no loss of generality
if we assume that its first k-columns have been already transformed into
unit vectors and vector (k + 1) is relpacing original unit vector e,.
(k)

Column NOo - k+1 k+2 3 n c
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Let r be the pivot row and 1 be any one of the rows of the vector
k + 1 that has a non-gzero element. Then there are c;(k) -~ 1 elements in
other non-basic columns of row i. Ietk + 2< J<n. If ve assume that
the non-sero elements in row i are randomly distributed then the probability
of a54(K) being non-sero 1s sppraximstely givea by |

' (1)
(x) eg " -1

"(‘um =0)w1- “““‘c,i.(:)l -

or

Similarly

[+
P(as #0)u ——

Ir arj(k) £ 0 and aij(k) was gero then we have an increase of non-

zero elements in row i and hence an 1n¢reaae in the probability of a

non-gero Cij(kﬂ') .

s - (XY _ Ay ol - (k) £ 0\

P(arj r’G imllu‘ c T vy s l\ﬂrj r wie

Hence

P (a.u(kﬂ ))‘ O) = P (aﬁ(k) £ 0) + P (au(k) ‘= 0 and beconing non-sero)
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or
() fe, (0 3 ) [0 &0
- - + 1.
- n-k-1 . n-k-1 n-k-1 n-k-1
(13 e (k) o o (K 4 (K) _ 5, (cp(K) -1) (e4(W) 1) i
n-k-1
of course,

cr(k’i) = cr(k) - 1.

If the ci(k*") computed on the basis of the above formula comes out
to be negative, it is set to zero and if it turns ocut to be greater than
n-k-1, we will set it equal ton-- k - 1. It is evident that
the above is easy to incorporate in computer codes where some form of

updating of c(k) is already in use.

Numerical results

Twenty-two 50 x 50 matrices were constructed.' The non-zero elements
of these matrices are randomly distributed. Their densities vary from
.027 to .150. The PFI of each of these matrices was determined using
four different methidds, given below.

1 (1) Columns of the A matrix were selected sequentially, beginning
with the first column, to enter the basis.

(i1) The original unit basic vectors were removed on observing

‘the minimm row count. The row count vector was updated (mod-

ified) in’the ordinary{wiy, vis., corresponding to each non-sero

i e Mt i et




" element of the vector going into the basis unity was
subtracted from the corresponding element of the row count
vector.

II  Same as I, except the row-count vector was updated (modified)
using formulas {1]. .

III Columns were brought into the basis in the order of ascending
values of DJ(O): § 1,2, e0e0p n. and then same as I (41).

Iv Same as III except that the row-count vector was updated using
formulas (1).
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The relationships between the densities of the original matrices
and their PFI's, for each of the four methods, are shown in Figure 1.
The densities of the original matrices are represented along the aSeciun
and their PFI's along the ordinate. It is clear from the figure that
Method II is always better than Method I; viz., for a given matrix the
density of its PFI, using Method II, is always less than the density
of PFI obtained by Method I. Since the approximate probability arguments
utilized for the modification of the row count vector in Method II becaome
increasingly incorrect for larger values for the density d of the original
matrix, some oscillations are observed in the graph of Method II for
d > .08. Method III, which involves sorting of the columns in actual
linear programming codes and therefore is not only difficult to prograam,
but also slow in operation, gives nearly the same PFI density as Method II.
In comparison with method I, Methods II, III and IV, on the average,
led to 24%, 19% and 32% fewer non-zero entries respectively. If one
is willing to pay the price of sortiﬁg the columns then Method IV is
recommended since it seems to be' the best qf all.
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